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1 BACKGROUND 

Cop.RIVER aims to promote the use of Earth Observation (EO) in applications and services related to 
the ecological status of riverscapes (i.e. rivers and their associated alluvial plains, floodplains and 
riparian forests). The action will strengthen the Copernicus user uptake by supporting regional and 
national authorities in the implementation of the EU Biodiversity Strategy to 2020, the Habitats and 
Birds Directives and the Water Framework Directive by applying GAP analysis, to complement available 
Copernicus information on the state and characteristics of rivers and riparian zones.  

The action will develop an innovative toolkit (i.e. environmental knowledge and geo-information 
services) that will allow defining a selected set of standardized ecological indicators from both 
terrestrial and aquatic domains. This tool will enable achieving independent decision-making to assist 
on water resource management, restoration and conservation actions in these complex, fragile and 
valuable landscapes. 

The action will also develop a benchmark for monitoring riparian processes and services (water quality, 
habitat conservation or urban planning) that will foster opportunities for European enterprises to 
provide innovative EO systems and services for a more sustainable management of riverscapes based 
on remote sensing data. 

2 SELECTED REMOTELY SENSED INDICATORS 

One of the main objectives of Cop.RIVER is to generate a list of remote sensing indicators relevant to 
the management and monitoring of riverscapes. First, a list of variables to characterize riverscape 
elements (terrestrial and aquatic domains) was generated after a careful analysis of the different EU 
regulations and directives and complemented with a literature review. Second, a list of remote sensing 
indicators was generated from a literature review, corresponding to each of the variables to 
characterize riverscape elements. Once the variables that define the riparian zone (terrestrial domain) 
conservation status and the remote sensing indicators that allow the measurement of the variables 
were identified, they were cross-referenced to show the list of indicators that can be used to define 
each variable. For the water quality (aquatic domain), methodologies derived from Sentinel-2 bands 
to measure parameters related to water quality parameter were identified using data from earlier 
experiences carried out by the IHCantabria team. 

A summary table integrating the list of the variables to characterize riverscape elements, the remote 
sensing indicators, the corresponding methodologies and the suitability of the CLMS products to 
provide the necessary information to measure the variables previously identified has been produced 
for the terrestrial (Table 1) and aquatic (Table 2) domains. In addition, these tables integrate a series 
of columns indicating whether the variables are included in the different directives evaluated or not. 

2.1 Terrestrial domain 

For the terrestrial domain, a total of 229 monitoring variables were identified in the different EU 
regulations and directives and complementing information derived from the literature review. A series 
of riparian zones indicators based on remote sensing are listed in Table 1 with their respective 
references for calculating each variable, in addition to the Copernicus products that can provide, or 
partially provide, relevant information to measure each variable. Finally, it is indicated the directives 
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and related guidelines that consider each of the variables for the characterization of the state of the 
riparian zones and the monitoring of their processes and services. 

2.2 Aquatic domain 

For the aquatic domain, a total of 7 monitoring variables were identified in the different EU regulations 
and directives and complementing information derived from the literature review. A series of water 
quality indicators based on remote sensing are listed in Table 2 with their respective references for 
calculating each variable, in addition to the Copernicus products that can provide, or partially provide, 
relevant information to measure each variable. Finally, it is indicated the directives and related 
guidelines that consider each of the variables for the characterization of the water quality and the 
monitoring of river processes and services. 
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Table 1. Summary of the terrestrial variables and indicators for riparian zones monitoring. 

 Variable Remote sensing indicators CLMS Products Utility WFD HD FD BS2030 SNHBL BGINs NbS 

Connectivity 

Longitudinal 
connectivity 

Narrowband hyperspectral Indexes  
(MSI, NMDI, WBI, NDWI, NDII, CAI, LCAI, PSRI, 

PRI, MCARI, MRENDVI, MRESR, MTVI1, 
MTVI2, RENVI, TCARI, TVI, VREI1, VREI2, ARI1, 

ARI2, CRI1, CRI2, NDLI and NDNI)[1] 
 

Topographic Indexes Derived from LiDAR  
(Elevation relative to low-flow water level, 

catchment area, catchment slope,  
topographic wetness index, multiresolution 
index of ridge top flatness, multiresolution 

index of valley bottom flatness, insolation and 
Topographic position index)[1] 

 
Structural metrics Derived from LiDAR  

(Height parameters, different percentiles of 
height distribution, cumulative percentage of 

returns in the different layers and intensity 
parameters and different percentage of 
intensity returned by points classified as 

ground)][1] 
 

Land cover[2] 
 

Riparian Zones Product[3] 

Useful CLMS products: 
Riparian Zones Land Use/ 

Land Cover, Riparian Zones 
Green Linear Elements, 

CORINE Land Cover 
 

Products that may be 
partially of use: Tree Cover 

Density 

YES YES NO YES NO YES YES 

Transversal 
connectivity YES YES YES YES NO YES YES 

Transversal 
connectivity 
under the 
canopy 

YES NO YES NO NO NO NO 

Others YES YES NO YES NO YES YES 
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Fragmentation 

Fragstats landscape metrics[4][5][6] 
 

Land Use[6][7] 
Mean Nearest Neighbor[7] 

Road density[7] 
Area of forest (total core area index, class 

area and percentage of landscape)[7] 

Useful CLMS products: 
Riparian Zones Land Use/ 

Land Cover, Riparian Zones 
Green Linear Elements, 

CORINE Land Cover 
 

Products that may be 
partially of use: Tree Cover 

Density, Imperviousness 

YES YES NO YES NO YES YES 

Disturbances 

Artificial 
elements 

Anthropic Exposure Indicator  
for River Basins (AEIRB)[8] 

Useful CLMS products: None 
 

Products that may be 
partially of use: CORINE 
Land Cover, European 

Settlement Map, 
Imperviousness 

YES YES YES YES YES NO YES 

Wildfires 

Burned Area (BA) product MCD64A1  
Collection 6[9] 

 
NDVI[10] 
NDWI[10] 

 
NBR[11][12] 

Useful CLMS products: None 
 

Products that may be 
partially of use: Delineation 

of Riparian Zones, 
Normalized Difference 

Vegetation Index (NDVI), 
Seasonal Trajectories 

NO YES NO YES YES NO NO 

Imperviousness Satellite images based classification[13][14][15][16] 

Useful CLMS products: 
Imperviousness 

 
Products that may be 

partially of use: Riparian 
zones Land Use/ Land 

Cover, CORINE Land Cover, 
Tree Cover Density, 

Normalized Difference 
Vegetation Index (NDVI), 

Fraction of Absorbed 

YES YES YES NO NO NO YES 
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Photosynthetically Active 
Radiation (FAPAR), Leaf area 

index (LAI),  European 
Settlement Map 

Floods 
Hydrologic model[17] 

Daily Precipitation Analysis[17] 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

YES YES YES NO NO YES YES 

Eutrophication 

Total nitrogen concentration (with Huan Jing-
1 satellite bands combination) [18] 

 
Chl-a concentration (with SABI and 

NDWI)[19][20] 
 

Total phycocyanin (with R705 and R665)[21] 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

NO YES NO YES NO NO NO 
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Drought 

Forest: 
 

Canopy fluorescence yield[22] 
 

Forest Drought Response Index[23] 
 

Forest Vulnerability Index[24] 
 

River: 
 

Optimized Meteorological Drought Index 
(OMDI)[25] 

 
Standardised Precipitation index (SPI-3, 12 

and 24)[26] 
Humidity Index in soil (iHI and iH-3)[26] 
Standardised Normalised Difference 

Vegetation Index (iNDVI and iNDVI-6)[26] 
modified Palmer Drought Severity Index 

(PDSI)[26][27] 
 

Water Deficit Drought Index (WDDI)[28] 
 

Standardized River Stage Index (SRSI)[29] 

Useful CLMS products: None 
 

Products that may be 
partially of use: Normalized 
Difference Vegetation Index 

(NDVI) 

NO YES NO NO NO NO YES 
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Species composition 

Biodiversity 

Height (Standard deviation of height)[30] 
Canopy cover[30] 

Canopy height density in different height 
ranges[30] 

 
Near infrared (NIR)[31][32] 

NDVI[32] 
Physiological reflectance adjusted index 

(PRI)[32] 
Anthocyanin reflectance adjusted index 

(ARI)[32] 
 

EVI[33] 

Useful CLMS products: None 
 

Products that may be 
partially of use: Tree Cover 

Density, Normalized 
Difference Vegetation Index 

(NDVI) 

YES YES NO YES YES NO YES 

Naturalness of 
the specific 
composition 

LiDAR derived height parameters (Hmean, Hsd, 
Hkurt, Hskew)[34] 

Coefficient of variation of echoes > 2m 
(Hcv)[34] 

Canopy density  (density of echoes > 50% of 
the 95th percentile height to the total number 

of echoes)[34] 

Useful CLMS products: None 
 

Products that may be 
partially of use: Tree Cover 

Density 

YES YES NO YES YES NO YES 
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Indicator 
species of 
regressive 
stages 

 Light intensity reaching the forest 
understorey[35] 

 
Elevation[36] 

Precipitations[36] 
Slope (steepness and exposure)[36] 
Annual potential insolation (API)[36] 

 Compound topographic index (CTI)[36] 
 Overstory plant species map[36] 

 
Spectral bands (Red edge 1 (RE1), 2 (RE2) and 
3 (RE3), Short-wave infrared 1 (SWIR-1) and 2 

(SWIR-2), Near infrared 1(NIR1) and 2 
(NIR2))[37] 

Spectral indices (Chlorophyll Red-Edge 
(Chlred-edge), Visible Atmospherically 

Resistant Indices Red Edge (VARI-rededge),  
Normalized Difference 819/1649 (NDII2), 
Canopy Chlorophyll Content Index (CCCI), 

Carotenoid reflectance index 700 (CRI700), 
Normalized Difference 819/1600 (NDII), 

Modified Chlorophyll Absorption in 
Reflectance Index divided by the Optimized 

Soil Adjusted Vegetation Index 
(MCARI/OSAVI) and Normalized Difference 
NIR/Rededge Normalized Difference Red-

Edge (NDRE))[37] 

 
 Most suitable specific spectral band[38][39] 

NDVI[38][40] 
 

Canopy reflectance[41] 
Leaf and canopy water content[41] 

Pigment-related absorption features 
(reflectance derivatives)[41] 

 
Orthophotos[42] 

 

Useful CLMS products: None 
 

Products that may be 
partially of use: Normalized 
Difference Vegetation Index 

(NDVI) 

YES YES NO YES YES NO YES 
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∆ pre-NDVI (NDVI pre flowering − NDVI 
blooming)[43] 

∆ pre-BR ((blue - red)/(blue + red) pre 
flowering) - ((blue - red)/(blue + red) 

blooming))[43] 
∆ pre-RG (((red - green)/(red + green) pre 
flowering) - ((red - green)/(red + green) 

blooming))[43] 
∆ BR-post ((blue - red)/(blue + red) blooming) 
- ((blue - red)/(blue + red)  post flowering))[43] 

∆ RG-post (((red - green)/(red + green) 
blooming) - ((red - green)/(red + green) post 

flowering))[43] 
 

Soil Adjusted Vegetation Index (SAVI)[44] 
Perpendicular Vegetation Index-3 in the 

optimum bio window[44] 
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Good status 
indicator 
species 

Single tree detection with WorldView-2 
images[45] 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

YES YES NO YES YES YES YES 

Age of canopy Stand age 

LiDAR derived height 
parameters[46][47][48][49][50] 

 
Crown closure between certain ranges of 

height[50] 
 

Tasseled Cap transformation brightness (TCB), 
greenness (TCG), wetness (TCW), angle (TCA) 

and distance (TCD)[51] 
Number of years since greatest change[51] 

Attributed change type[51] 
Topographic wetness index (TWI)[50][51] 

Topographic solar radiation index (TSRI)[51] 
Elevation[51] 

Slope[51] 
 

Texture (Mean intensity, Signal-to-noise 
value, First order variance, Kurtosis, First 

order entropy and Second order contrast)[52] 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

YES YES YES YES YES NO NO 
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Regeneration 

Difference between the NDVI and NBR 
indices[53] 

 
Forest Recovery Index (FRI)[54][55] 

Fraction of Vegetation Cover (FVC)[54][55] 
 

Indices derived from NDVI: Half recovery time 
(HRT), Recovery trend index (RTI) and 

Cumulative Relative Recovery Index (CRRI)[56] 
 

Elevation metrics derived from the Digital 
Terrain Model (DTM)[57] 

Vegetation cover derived from LiDAR 
NDVI[57] 

 
Landsat Structural index[58] 

 
Landsat Bands[59] 

Useful CLMS products: None 
 

Products that may be 
partially of use: Normalized 
Difference Vegetation Index 

(NDVI) 

YES YES NO YES YES NO YES 
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Successional 
stages 

 Lorey's height (based on Skewness of 
Heights, Kurtosis of Heights, 90th height 

percentile and 6th height decile)[60][61] 
Gray Level Co-occurrence measures (GLCM) 

(Contrast, Variance, Mean and 
Dissimilarity)[60] 

Shadow fraction[60] 

 
Normalized Difference Moisture Index 

(NDMI)[62] 
Moisture stress index (MSI)[62] 

Inverse Minimum Noise Fraction (MNF) 
transformed bands [62] 

 
Tasseled cap transformation brightness (TCB) 

and wetness (TCW)[63] 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

NO YES NO NO NO NO YES 

Land Use 

Protected areas 
of community 
interest  

  

Useful CLMS products: None 
 

Products that may be 
partially of use: Natura 2000 

YES YES YES NO YES NO YES 

Land Use/Land 
cover 

  

Useful CLMS products: 
Riparian Zones Land 

Use/Land Cover, Riparian 
Zones Green Linear 

Elements, CORINE Land 
Cover  

 
Products that may be 

partially of use: Delineation 
of Riparian Zones, Tree 

Cover Density, 
Imperviousness 

YES YES YES YES YES NO YES 
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Vegetation 
cover on the 
river bank 

Land use land cover[64][65] 
 

MODIS product Vegetation Continuous 
Fields[66] 

Useful CLMS products: 
Riparian Zones Land 

Use/Land Cover, Riparian 
Zones Green Linear 

Elements, CORINE Land 
Cover  

 
Products that may be 

partially of use: Delineation 
of Riparian Zones, Tree 

Cover Density, 
Imperviousness, Normalized 
Difference Vegetation Index 

(NDVI) 

YES YES YES YES YES NO YES 
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Dasometry Height 

Canopy height characteristics derived from 
LiDAR[51][67][68][69][70][71][72] 

Canopy cover fraction[67][73] 
Difference in years between sampling and 

LiDAR data collection date[67] 
 

Digital Elevation Model (DEM)[74] 
Digital Surface Model (DSM)[74][75] 

 
 

Spectral bands (SWIR1, Red, Green)[76] 
Spectral bands combination (NIR/Green, 
SWIR1/Red, SWIR2/NIR, SWIR1/Green,  

Red/Green, SWIR1/Green, SWIR2/SWIR1 and 
SWIR2/Red)[76] 

GSAVI (Green Soil Adjusted Vegetation 
Index)[76] 

NDII (Normalized Difference Infrared Index)[76] 
 

Distance of the beginning signal and ground 
peaks[48] 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

NO YES NO YES NO NO YES 
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Vertical 
complexity 

Digital Surface Model (DSM)[77][78] 
 

Foliage Height Diversity (FHD)[79] 
Effective number of layers (NoLs)[79] 

 
Sentinel-1 VV and VH backscatter 

coefficients[80] 
Surface reflectance of Sentinel-2 bands[80] 

 
RGB image[78] 

Digital Terrain Model (DTM)[78] 
 

LiDAR derived height parameters[81][82] 
 

Sentinel-2 indices: NDVI, NDWI1, NDWI2, 
NDre1, NDre2[74] 

PCA texture maps[74] 

Useful CLMS products: None 
 

Products that may be 
partially of use: Normalized 
Difference Vegetation Index 

(NDVI) 

YES YES NO YES NO NO NO 
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Dead wood 

Dead wood Potential (DWP)[83] 
 

Blue[84] 
Hue[84] 

Saturation[84] 
Height[84] 

Spectral bands combinations (Red to all band 
ratio and Blue Infrared Ratio)[84] 

NDVI[84][85] 

 
 Red-green index[85] 

 
LiDAR derived percentiles of height[86] 

Height metrics derived from LiDAR[86][87] 
 

NPV (Non-photosynthetic vegetation)[88] 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

YES YES NO YES YES NO NO 

Stand density 

Fractional vegetation coverage[89] 
 

Summing the segments that contained the 
centroid within the sample plot[90] 

 
Number of trees using the Digital Surface 

Model for the individual tree count[91] 
 

SWIR-1[92] 

Useful CLMS products: None 
 

Products that may be 
partially of use: Tree Cover 

Density 

YES YES NO YES YES NO YES 
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Diameter 

Canopy cover fraction[67] 
Height metrics derived from LiDAR[67][94] 

Difference in years between sampling and 
LiDAR data collection date[67] 

 
Crown Projection Area (CPA)[94] 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

NO YES NO NO NO NO YES 
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Biomass 

Height metrics derived from 
LiDAR[67][97][98][99][100] 

Canopy cover fraction[67][101] 
Difference in years between sampling and 

LiDAR data collection date[67] 
 

Temperature data (annual mean temperature 
and greater than 0℃ accumulated 

temperature data)[102] 
Mean rainfall data (PA)[102] 

Digital Elevation Model (DEM)[102] 
Slope data (ASP)[102] 
NDVI[102][103][104][105] 

Perpendicular Vegetation Index (PVI)[102] 
Ratio vegetation index (RVI)[102] 

Soil Adjusted Ratio Vegetation Index 
(SARVI)[102] 

Transformative Soil adjusted ratio vegetation 
index (TSAVI)[102] 

 
Fractional cover[102] 

 
Maximal Stand density index (SDIsmax)[98] 

Aboveground volume-weighted mean wood 
density (WDsAGV)[98] 

 
Leaf Area Index (LAI)[100][101] 

 
SWIR-2[106][107] 

Textural measure image developed from 
spectral SWIR-2 (B7_W5_ME)[106] 

 
Pigment Specific Simple Ratio (PSSR)[108] 

Near Infrared Band[108] 
 

Fraction of Absorbed Photosynthetically 
Active Radiation (FPAR)[104] 

Chlorophyll content in the leaf (Cab)[104] 

Useful CLMS products: None 
 

Products that may be 
partially of use: Tree Cover 

Density, Normalized 
Difference Vegetation Index 
(NDVI), Leaf Area Index (LAI) 

NO YES NO YES YES YES YES 
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Texture characteristics of Sentinel-1[104] 
 

VH and VV (backscatter coefficients for 
polarizations VH and VV of Sentinel-1B)[106] 

 
Canopy Chlorophyll Content  (LAIcb) and 

Canopy Water Content (LAIcw)[107] 
Chlorophyll index calculated using red-edge 

bands (Clre)[107] 
SWIR Band[107] 

Entropy measure derived from the summer 
NDVI[107] 

 
Simple Ratio (SR)[108] 

Soil Adjusted Vegetation Index (SAVI)[108] 
 

ICR[105] 
Green[105] 

 
NDI45[109] 

Enhanced Vegetation Index (EVI)[109] 
 

Red[110] 
Sentinel band textures (contrast, correlation, 
variance, entropy and second moment)[110] 

 
Normalized Difference Water Index 

(NDWI)[111] 
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Habitat condition 

Habitat quality 
Riparian Forest Composite indicator[45] 

 
Tree cover[112] 

Useful CLMS products: None 
 

Products that may be 
partially of use: Tree Cover 

Density 

NO YES NO NO YES YES YES 

Habitat width  
Using the riparian forest patch detection 

process[113] 

Useful CLMS products: None 
 

Products that may be 
partially of use: Riparian 

Zones Land Use/ Land 
Cover, Riparian Zones Green 

Linear Elements, 
Delineation of Riparian 

Zones, CORINE Land Cover, 
Tree Cover Density 

YES NO NO NO NO NO NO 

Habitat size 

Processing satellite images  to get landscape 
metrics[114][115] 

 
Fragstats landscape metrics[116] 

 
Land cover[117] 

Useful CLMS products: None 
 

Products that may be 
partially of use: Riparian 

Zones Land Use/ Land 
Cover, Riparian Zones Green 

Linear Elements, 
Delineation of Riparian 

Zones, CORINE Land Cover, 
Tree Cover Density 

NO YES NO NO NO NO NO 
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River morphology 

River flow 

Width related parameters[118][119] 
 

 Convert the drainage areas to discharges 
(from a DEM)[120] 

 
At-many-stations hydraulic geometry 

(AMHG)[121] 
 

 Correlation between observed discharge and 
the ratio of a land pixel for calibration (C) and 

a water pixel for measurement (M) (C/M 
Method)[122] 

 
SWOT (Surface Water and Ocean Topography) 

VM (Virtual Mission) measurements[123] 
 

 Remote Sensing Hydrological Station[124] 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

YES YES YES NO NO NO YES 

Vegetation NGAI[125] 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

YES YES NO NO NO NO NO 
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Channel 
features 

Channel width: 
 

Bank–to–bank width at the cross section[126] 
Separate water and dry pixels from Sentinel-1 

images[118] 
Digital Elevation Model (DEM)[127][122] 

By algorithm that progressively increased the 
centerline from the raw DEM until thresholds 

of elevation differences and slopes were 
reached[120] 

Distance between bank edges perpendicular  
to the centerline[128][129] 

Modified Normalized Difference Water Index 
(MNDWI)[128] 

Measured at bankfull (bank to bank) using 
Cartesian coordinate method in ArcGIS[130] 

 
Sinuosity: 

 
Sinuosity Index (SI)[128][131][132] 

Accurate delineation of a channel 
centerline[129] 

Channel Sinuosity (S)[133][134] 
Ratio of the linear distance (D) to the actual 

river length (l)[122] 
 

River gradient: 
 

Ratio of elevation difference (H) to the 
horizontal distance (L)[122] 

 
Channel slope: 

 
Centreline extracted from the raw LiDAR 

DEM[120] 
SWOT (Surface Water and Ocean Topography) 

VM (Virtual Mission) measurements[123] 
 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

YES NO NO YES NO NO NO 
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River depth: 
 

SWOT (Surface Water and Ocean Topography) 
VM (Virtual Mission) measurements[123] 
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Typical 
structures 

Rill: 
 

Photointerpretation of stereoscopic satellite 
images[135] 

Aerial photographs[136] 
Rills depth estimated using two moving mean 

filters[136] 
Visual interpretation of differences in 

coloration, tonality, texture, and shape[137] 
 

Riffles: 
 

Width related parameters[138] 
Influenced channel slope and wood 

abundance[138] 
 

Bars: 
 

Mask product of water and land[139] 
Surface reflectance[139] 

Sentinel-1 contour lines[140] 
Sandbars 3D shape[140] 

Wet-dry line[141] 
Mean high water line[141] 

Erosion scarp[141] 
Vegetation line[141] 

Modified Normalized Difference Water Index 
(MNDWI)[141] 

Near-Infrared band (NIR)[142] 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

YES YES NO NO NO NO YES 
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Phenology Phenology 

Enhanced vegetation index (EVI) time series 
(to measure SOS and EOS)[143][144][145][146] 

Normalized Difference Vegetation Index 
(NDVI) time series (to measure SOS and 

EOS)[145][147] 
Phenology Index (PI) (a combination between 
NDVI and NDII) (to measure SOS and EOS)[145] 
Leaf Area Index (LAI) time series (to measure 

SOS and EOS)[145][149] 
MERIS Terrestrial Chlorophyll Index (MTCI) 
time series (to measure SOS and EOS)[145] 

EVI2 (two bands EVI (without the blue band)) 
time series (to measure SOS and EOS)[145] 

Normalized Difference Water Index (NDWI) 
time series (to measure SOS and EOS)[145] 
Maximum temperature (close relation to 

senescence)[148] 
Start of foliage season (SFS) (based on NDVI 

time series)[148] 
Maximum of foliage season (MFS) (based on 

NDVI time series)[148] 
Optimal foliage/leaf senescence (OFS) (based 

on NDVI time series)[148] 
End of foliage season (EFS) (based on NDVI 

time series)[148] 
Length of foliage season (LFS) (based on NDVI 

time series)[148] 
Growing Season Index (GSI)[149] 

Length of season (LOS) (Based on EVI time 
series)[146] 

Amplitude (AMPL) (Based on EVI time 
series)[146] 

Useful CLMS products: 
Normalized Difference 

Vegetation Index (NDVI), 
Seasonal Trajectories 

 
Products that may be 
partially of use: Plant 

phenology Index, Fraction of 
Absorbed 

Photosynthetically Active 
Radiation (FAPAR), Leaf 

Area Index (LAI) 

NO YES NO NO NO NO NO 
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Functions 

Shading of the 
active 
watercourse 

Solar radiation[150][151][152] 
Leaf Area Index (LAI)[150] 

Mean Manning roughness coefficient[150] 
Land cover[151] 

Digital Surface Model (DSM) of first returns 
(including vegetation)[151] 

 Canopy height model (via LiDAR)[152] 

Useful CLMS products: None 
 

Products that may be 
partially of use: Leaf Area 

Index (LAI) 

YES NO NO NO NO NO YES 

Erosion 
reduction (nothing found) 

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

NO NO NO NO NO YES YES 

Others   

Useful CLMS products: None 
 

Products that may be 
partially of use: None 

NO NO NO NO NO NO YES 
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Table 2. Summary of the aquatic variables and indicators for water quality monitoring. 

Variable Remote sensing indicators CLMS Products Utility WFD HD 

Oxygenation conditions Sentinel B3 and B4 Bands[153] 
Useful CLMS products: None 

 
Products that may be partially of use: None 

YES YES 

Salinity 

Sentinel Band B3[153] 
 

 Landsat Band 1- Coastal/Aerosol (0.433–0.453 mm)[154] 
Landsat Band 2-Blue (0.450–0.515 mm)[154] 

Landsat Band 3 – Green (0.525–0.600 mm)[154] 

Useful CLMS products: None 
 

Products that may be partially of use: None 
YES NO 

Temperature 

Level-2 Provisional Surface Temperature (pST) estimates derived from the 
Landsat 4–5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+)[155] 
 

Temperature metrics estimated using Landsat 7 ETM+ and 
Landsat 8 TIRS imagery with the Radiative transfer equation applied with 

atmospheric correction parameters from AtmCorr[156] 

Useful CLMS products: None 
 

Products that may be partially of use: None 
YES NO 

Nutrient condition 
Total nitrogen concentration (with Huan Jing-1 satellite bands 

combination) [18] 

Useful CLMS products: None 
 

Products that may be partially of use: None 
YES YES 
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pH Sentinel B3 and B4 Bands[153] 
Useful CLMS products: None 

 
Products that may be partially of use: None 

YES YES 

Pollution Sentinel-2 B3 and B4 Bands[153] 
Useful CLMS products: None 

 
Products that may be partially of use: None 

YES YES 

Eutrophication 

Total nitrogen concentration (with Huan Jing-1 satellite bands 
combination) [18] 

 
Chl-a concentration (with SABI and NDWI)[19][20] 

 
Total phycocyanin (with R705 and R665)[21] 

Useful CLMS products: None 
 

Products that may be partially of use: None 
NO YES 
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